
*E-mail: chib@simon.wustl.edu

Journal of Econometrics 86 (1998) 221—241

Estimation and comparison of multiple change-point
models

Siddhartha Chib*
John M. Olin School of Business, Washington University, 1 Brookings Drive, Campus Box 1133,

St. Louis, MO 63130, USA

Received 1 January 1997; received in revised form 1 August 1997; accepted 22 September 1997

Abstract

This paper provides a new Bayesian approach for models with multiple change points.
The centerpiece of the approach is a formulation of the change-point model in terms of
a latent discrete state variable that indicates the regime from which a particular observa-
tion has been drawn. This state variable is specified to evolve according to a discrete-time
discrete-state Markov process with the transition probabilities constrained so that the
state variable can either stay at the current value or jump to the next higher value. This
parameterization exactly reproduces the change point model. The model is estimated by
Markov chain Monte Carlo methods using an approach that is based on Chib (1996).
This methodology is quite valuable since it allows for the fitting of more complex change
point models than was possible before. Methods for the computation of Bayes factors are
also developed. All the techniques are illustrated using simulated and real data
sets. ( 1998 Published by Elsevier Science S.A. All rights reserved.

JEL classification: C1; C4

Keywords: Bayes factors; Change points; Gibbs sampling; Hidden Markov model; Mar-
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1. Introduction

1.1. Change-point model

This paper is concerned with the problems of estimating and comparing
time-series models that are subject to multiple change points. Suppose
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3Rd, the problems of inference include the estimation of the parameter

vector H"(h
1
,2,h

m`1
), the detection of the unknown change points

¶
m
"(q

1
,2,q

m
), and the comparison of models with different numbers of

change points.
This multiple change-point model has generated an enormous literature. One

question concerns the specification of the jump process for the m
t
. In the

Bayesian context this is equivalent to the joint prior distribution of the q
k
and

the h
k
, the parameters of the different ‘regimes’ induced by the change points.

The model is typically specified through a hierarchical specification in which
(for every time point t) one first models the probability distribution of a
change, given the previous change points; then, the process of the parameters in
the current regime, given the current change points and previous parameters;
and finally, the generation of the data, given the parameters and the change
points.

Chernoff and Zacks (1964) propose a special case of this general model in
which there is a constant probability of change at each time point (not depen-
dent on the history of change points). Then, given that the process has experi-
enced changes at the points ¶

k~1
"(q

1
,2,q

k~1
), the parameter vector h

k
in the

new regime, conditioned on the parameters H
k~1

of the previous regimes, is
assumed to be drawn from some distribution h

k
Dh

k~1
that depends only on h

k~1
.

The parameters of this distribution, referred to as hyperparameters, are either
specified or estimated from the data. For instance, one may let h

k
DH

k~1
,

¶
k~1

&N(h
k~1

, R
0
), where N denotes the normal distribution and R

0
(the

variance matrix) is the hyperparameter of this distribution.
Yao (1984) specified the same model for the change points but assumed that

the joint distribution of the parameters Mh
k
N is exchangeable and independent of

the change points. Similar exchangeable models for the parameters have been
studied by Carlin et al. (1992) in the context of a single change point and by
Inclan (1993) and Stephens (1994) in the context of multiple change points. Barry
and Hartigan (1993) discussed alternative formulations of the change points in
terms of product partition distributions.
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One purpose of this paper is to show that it is possible to extend the literature
and fit models in which the change-point probability is not a constant but
depends on the regime. In this case, the probability distribution of the change
points is characterized not by just one parameter but by a set of parameters (say)
P. The precise definition of these parameters is explained in Section 2 below.

Consider the distribution of the data given the parameters. Let ½
i
"(y

1
,2,y

i
)

denote the history through time i, and ½i,j"(y
i
, y

i`1
,2,y

j
) the history from

time i through j. Then the joint density of the data conditional on (H, ¶
m
) is

given by

f (½
n
DH,¶

m
)"

m`1
<
k/1

f (½qk~1`1,qkD½qk~1
, h

k
, q

k
), (1)

where q
0
"0, q

m`1
"n, and f ( ) ) is a generic density or mass function. This is

obtained by applying the law of total probability to the partition induced by ¶
m
.

A feature of this problem is that the density f (½
n
DH,P), obtained by marginaliz-

ing f (½
n
DH,¶

m
) over all possible values of Mq

j
N with respect to the prior mass

function on ¶
m
, is generally intractable.

1.2. An existing computational approach

The intractability of f (½
n
DH, P) has led to some interesting approaches based

on Markov chain Monte Carlo simulation methods. One idea due to Stephens
(1994) (see Barry and Hartigan, 1993 for an alternative approach) is to sample
the unknown change points ¶

m
and the parameters from the set of full condi-

tional distributions

H, PD½
n
, ¶

m
; q

k
D½

n
, H, P, ¶

mCk
, k)m, (2)

where P denotes (generically) the parameters of the change-point process and

¶
mCk

"(q
1
,2,q

k~1
, q

k`1
,2,q

m
)

is the set of change points excluding the kth. The essential point is that the
conditional distribution H, PD½

n
, ¶

m
is usually simple, whereas each of the

conditional distributions q
k
D½

n
, H, P, ¶

mCk
depends on the two neighboring

change points (q
k~1

, q
k`1

) and on the data ½qk~1`1,qk`1. Specifically,
q
k
D½

n
, H, P, ¶

mCk
is given by the mass function

Pr(q
k
"jD½

n
, H, P, ¶

mCk
)"Pr(q

k
"jD½qk`1

, h
k
, h

k`1
, P, q

k~1
, q

k`1
)

Jf (½qk~1`1,jD½qk, h
k
)]f (½j`1, qk`1~1D½

j
, h

k`1
)]Pr(q

k
"jDq

k~1
),

for q
k~1

(j(q
k`1

. The normalizing constant of this mass function is the sum of
the right-hand side over j.

This approach suffers from two weaknesses. Both are connected to the
simulation of the change points. The first arises from the fact that the change
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points ¶
m

are simulated one at a time from the m full conditional distributions
q
k
D½

n
, H, P, ¶

mCk
rather than from the joint distribution

¶
m
D½

n
, H, P.

Sampling the latter distribution directly, say through a Metropolis—Hastings
step, is not practical because of the difficulty of developing appropriate proposal
generators for the change points. Liu et al. (1994) in theoretical work and Carter
and Kohn (1994), Chib and Greenberg (1995) and Shephard (1994) in empirical
work have shown that the mixing properties of the MCMC output is consider-
ably improved when highly correlated components are grouped together
and simulated as one block. Conversely, MCMC algorithms that do not
exploit such groupings tend to be slow to converge. The second is the
computational burden in evaluating the joint density functions
f (½qk~1`1,jD½qk, h

k
)]f (½j`1,qk`1~1D½

j
, h

k`1
) for each value of j in the support

q
k~1

(j(q
k`1

. This calculation must be repeated for each break point leading
to individual density evaluations of the order nm. With a long time series running
into several hundreds of observations, these calculations are too burdensome to
be practical for even relatively small values of m.

1.3. Outline of paper

The rest of the paper is organized as follows. In Section 2, a new parameteriz-
ation of the change point model and an associated MCMC algorithm is supplied
that eliminates the weaknesses of existing approaches. The MCMC implementa-
tion is shown to be straightforward and a simple consequence of the approach
developed by Chib (1996) for hidden Markov models. In Section 3 the problem
of model comparison is considered and approaches for estimating the likelihood
function, the maximum-likelihood estimate, and the Bayes factors for compar-
ing change-point models are provided. It is shown that the Bayes factors can be
readily obtained from the method of Chib (1995) in conjunction with the
proposed parameterization of the model. Section 4 contains examples of the
ideas and Section 5 concludes.

2. A new parameterization

We begin this section by providing a new formulation of the change-point
model that lends itself to straightforward calculations. This formulation is based
on the introduction of a discrete random variable s

t
in each time period, referred

to as the state of the system at time t, that takes values on the integers
M1, 2,2,m#1N and indicates the regime from which a particular observation
y
t
has been drawn. Specifically, s

t
"k indicates that the observation y

t
is drawn

from f (y
t
D½

t~1
, h

k
).
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The variable s
t

is modeled as a discrete time, discrete-state Markov
process with the transition probability matrix constrained so that the model
is equivalent to the change-point model. To accomplish this, the transition
probability matrix specifies that s

t
can either stay at the current value or jump to

the next higher value. This one-step ahead transition probability matrix is
represented as

P"A
p
11

p
12

0 2 0

0 p
22

p
23

2 0

F F F F F

2 F 0 p
mm

p
m,m`1

0 0 2 0 1 B , (3)

where p
ij
"Pr(s

t
"jDs

t~1
"i) is the probability of moving to regime j at time

t given that the regime at time t!1 is i. The probability of change thus depends
on the current regime, a generalization of both Yao (1984) and Barry and
Hartigan (1993) (it is easy to make the p

ii
a function of covariates through

a probit link function, if desired). It is specified that the chain begins in state 1 at
t"1, implying that the initial probability mass function on the states is
(1, 0,2,0), and the terminal state is m#1. Note that there is only one unknown
element in each row of P.

One way to view this parameterization is as a generalized change-point model
in which the jump probabilities p

ii
(i)m) are dependent on the regime and the

transitions of the state identify the change points ¶
m
"(q

1
,2,q

m
). The kth

change occurs at q
k

if sqk"k and sqk`1
"k#1. Note that this reparameteriz-

ation automatically enforces the order constraints on the break points. Another
way to view this parameterization is as a hidden Markov model (HMM) (Chib,
1996) in which the transition probabilities of the hidden state variable s

t
are

restricted in the manner described above. This view of the model forms the basis
of our computational MCMC scheme.

2.1. Markov chain Monte Carlo scheme

Suppose that we have specified a prior density n(H, P) on the parameters and
that data ½

n
is available. In the Bayesian context, interest centers on the

posterior density n(H, PD½
n
)Jn(H, P) f (½

n
DH, P). Note that we use the notation

n to denote prior and posterior density functions of (H, P). This posterior
density is most fruitfully summarized by Markov chain Monte Carlo methods
after the parameter space is augmented to include the unobserved states
S
n
"(s

1
,2,s

n
) (see Chib and Greenberg, 1996 for a convenient summary of these

methods). In other words, we apply our Monte Carlo sampling scheme to the
posterior density n(S

n
, H, PD½

n
).
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The general sampling method works recursively. First, the states S
n

are
simulated conditioned on the data ½

n
and the other parameters (where s

n
is set

equal to m#1), and second, the parameters are simulated conditioned on the
data and S

n
. Specifically, the MCMC algorithm is implemented by simulating

the following full conditional distributions:

1. H, PD½
n
, S

n
, and

2. S
n
D½

n
, H, P,

where the most recent values of the conditioning variables are used in all
simulations. Note that the first distribution is the product of PDS

n
and

HD½
n
, S

n
, P. The latter distribution is model specific and is therefore discussed

only in the context of the examples below.

2.2. Simulation of Ms
t
N

Consider now the question of sampling S
n
from the distribution S

n
D½

n
, H, P,

which amounts to the simulation of ¶
m

from the joint distribution ¶
m
D½

n
, H, P.

As mentioned earlier, sampling the change points from the latter distribution is
difficult, if not impossible, however, the simulation of the states from the former
distribution is relatively straightforward and requires just two passes through
the data, regardless of the number of break points. Because the MCMC samples
on the states are obtained by sampling the joint distribution, significant im-
provements in the overall mixing properties of the output (relative to the
one-at-a time sampler) can be expected. In addition, this algorithm produces
considerable time savings, requiring merely order n conditional density evalu-
ations of y

t
.

The algorithm for sampling the states follows from Chib (1996), where the
unrestricted Markov mixture model is analyzed by MCMC methods. The
objective is to draw a sequence of values of s

t
3M1, 2,2,m#1N from the mass

function p(S
n
D½

n
, H, P). Henceforth, the notation p( ) ) is used whenever one is

dealing with a discrete mass function. Let

S
t
"(s

1
,2,s

t
); St`1"(s

t`1
,2,s

n
),

denote the state history up to time t and the future from t#1 to n, respectively,
with a similar convention for ½

t
and ½t`1, and write the joint density in reverse

time order as

p(s
n~1

D½
n
, s

n
, H, P)]2]p(s

t
D½

n
, St`1, H, P)]2]p(s

1
D½

n
, S2, H, P).

(4)

We write the joint density in this form because only then can each of the
mass functions be derived and sampled. The process is completed by sampling,

226 S. Chib / Journal of Econometrics 86 (1998) 221–241



in turn,

f s
n~1

from p(s
n~1

D½
n
, s

n
"m#1, H, P),

f s
n~2

from p(s
n~2

D½
n
, Sn~1, H, P),

f F
f s

1
from p(s

1
D½

n
, S2, H, P).

The last of these distributions is degenerate at s
1
"1. Thus, to implement this

sampling it is sufficient to consider the sampling of s
t
from p(s

t
D½

n
, St`1, H, P).

Chib (1996) showed that

p(s
t
D½

n
, St`1, H, P)Jp(s

t
D½

t
, H, P)p(s

t`1
Ds
t
, P), (5)

where the normalizing constant is easily obtained since s
t
takes on only two

values, conditioned on the value taken by s
t`1

. There are two ingredients in this
expression — the quantity p(s

t
D½

t
, H, P) and p(s

t`1
Ds
t
, H, P), which is just the

transition probability from the Markov chain. To obtain the mass function
p(s

t
D½

t
, H, P), t"1,2,2,n, a recursive calculation is required. Starting with

t"1, the mass function p(s
t~1

D½
t~1

, H, P) is transformed into p(s
t
D½

t
, H, P)

which in turn is transformed into p(s
t`1

D½
t`1

, H, P), and so on. The details are
as follows. Suppose p(s

t~1
"lD½

t~1
, H, P) is available. Then, the update to the

required distribution is given by

p(s
t
"kD½

t
, H, P)"

p(s
t
"kD½

t~1
,H, P)]f (y

t
D½

t~1
, h

k
)

+k
l/k~1

p(s
t
"lD½

t~1
,H,P)]f (y

t
D½

t~1
,h

l
)
,

where

p(s
t
"kD½

t~1
, H, P)"

k
+

l/k~1

p
lk
]p(s

t~1
"lD½

t~1
, H, P), (6)

for k"1, 2,2, m#1, and p
lk

is the Markov transition probability in Eq. (3).
These calculations are initialized at t"1 by setting p(s

1
D½

0
, h) to be the mass

distribution that is concentrated at 1. With these mass functions at hand, the
states are simulated from time n (setting s

n
equal to m#1) and working

backwards according to the scheme described in Eq. (5).
It can be seen that the sample output of the states can be used to determine the

distribution of the change points. Alternatively, posterior information about
change points can be based on the distribution

Pr(s
t
D½

n
)"Pp(s

t
"kD½

t~1
, H, P)n(H, PD½

n
)d(H, P).

This implies that a Monte Carlo estimate of Pr(s
t
D½

n
) can be found by taking an

average of p(s
t
"kD½

t~1
, H, P) over the MCMC iterations. By the Rao—Black-

well theorem, this estimate of Pr(s
t
D½

n
) is more efficient than one based on the

empirical distribution of the simulated states.
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2.3. Simulation of P

The revision of the non-zero elements p
ii

in the matrix P given the data and
the value of S

n
is straightforward since the full conditional distribution

PD½
n
, S

n
, H is independent of (½

n
, H), given S

n
. Thus, the elements p

ii
of P may

be simulated from PDS
n
without regard to the sampling model for the data y

t
(see

Albert and Chib, 1993).
Suppose that the prior distribution of p

ii
, independently of p

jj
, jOi, is Beta,

i.e.,

p
ii
&Beta(a,b)

with density

n(p
ii
Da,b)"

C (a#b)

C (a)C (b)
pa~1
ii

(1!p
ii
)b~1,

where a< b. The joint density of P is, therefore, given by

n(P)"c
m
<
i/1

p(a~1)
ii

(1!p
ii
)(b~1)

where c"M(C(a#b))/(C(a)C(b))Nm. The parameters a and b may be specified so
that they agree with the prior beliefs about the mean duration of each regime.
Because the prior mean of p

ii
is equal to pN "a/(a#b), the prior density of the

duration d in each regime is approximately n(d)"pN d~1(1!pN ) with prior mean
duration of (a#b)/b. Let n

ii
denote the number of one-step transitions from

state i to state i in the sequence S
n
. Then multiplying the prior by the likelihood

function of PDS
n

yields

p
ii
DS

n
&Beta(a#n

ii
, b#1), i"1,2,m, (7)

since n
i,i`1

"1. The probability p
ii

(1)i)m) can now be simulated from
Eq. (7) by letting

p
ii
"

x
1

+2
j/1

x
j

, x
1
&Gamma(a#n

ii
, 1); x

2
&Gamma(b#1, 1)

This completes the simulation of S
n
and the non-zero elements of P.

3. Bayes factor calculation

In this section we consider the comparison of alternative change-point models
(e.g., a model with one change point vs. one with more than one change point).
The Bayesian framework is particularly attractive in this context because these
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models are non-nested. In such settings, the marginal likelihood of the respective
models, and Bayes factors (ratios of marginal likelihoods), are the preferred
means for comparing models (Kass and Raftery, 1995; Berger and Perrichi,
1996).

The computation of the marginal likelihood using the posterior simulation
output has been an area of much current activity. A method developed by Chib
(1995) is particularly simple to implement. The key point is that the marginal
likelihood of model M

r

m(½
n
DM

r
)"P f (½

n
DM

r
, H, P)n(H, P)DM

r
) dt

may be re-expressed as

m(½
n
DM

r
)"

f (½
n
DM

r
, H*, P*)n(H*, P*DM

r
)

n(H*, P*D½
n
, M

r
)

, (8)

where (H*, P*) is any point in the parameter space. Note that, for convenience,
the notation does not reflect the fact that the size of the parameter space, and the
parameters, are model dependent. The latter expression, which has been called
the basic marginal likelihood identity, follows from Bayes theorem. This expres-
sion requires the value of the likelihood function f (½

n
DM

r
, t*) at the point

t*"(H*, P*) along with the prior and posterior ordinates at the same point.
These quantities are readily obtained from the MCMC approach discussed
above. The choice of the point t* is in theory completely irrelevant but in
practice it is best to choose a high posterior density point such as the maximum-
likelihood estimate or the posterior mean. Given estimates of the marginal
likelihood for two models M

r
and M

s
, the Bayes factor of r vs. s is defined as

B
rs
"

m(½
n
DM

r
)

m(½
n
DM

s
)
.

Large values of B
rs

indicate that the data support M
r
over M

s
(Jeffreys, 1961).

In the rest of the discussion we explain how each of the quantities required for
the marginal likelihood calculation is obtained. The model index M is sup-
pressed for convenience.

3.1. Likelihood function at t*"(H*, P*)

A simple method for computing the likelihood function is available from the
proposed parameterization of the change-point model. It is based on the
decomposition

ln f (½
n
Dt*)"

n
+
t/1

ln f (y
t
D½

t~1
, t*),
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where

f (y
t
D½

t~1
, t*)"

m
+
k/1

f (y
t
D½

t~1
, t*, s

t
"k)p(s

t
"kD½

t~1
, t*) (9)

is the one-step ahead prediction density. The quantity f (y
t
D½

t~1
, t*, s

t
"k) is

the conditional density of y
t
given the regime s

t
"k whereas p(s

t
"kD½

t~1
, t*) is

the mass in Eq. (6). The one-step ahead density (and, consequently, the joint
density of the data) is thus easily obtained. It should be noted that the likelihood
function is required at the selected point t* for the computation of the marginal
likelihood. It is not required for the MCMC simulation.

3.2. Estimation by simulation

A Monte Carlo version of the EM algorithm can be used to find the maximum
likelihood estimate of the parameters (H, P). This estimate can be used as the
point t* in the calculation of the marginal likelihood.

Note that the EM algorithm entails the following steps: First, the computa-
tion of the function

Q(t, t(i))"P
Sn

ln ( f (½
n
, S

n
Dt))p(S

n
D½

n
, t(i)) dS

n
, (10)

which requires integrating S
n

out from the complete data joint density
f (½

n
, S

n
Dt) with respect to the current distribution of S

n
given ½

n
and the current

parameter estimate t(i). The second step is the maximization of this function to
obtain the revised value t(i`1).

Due to the intractability of the integral above, the first step is implemented by
simulation. Because the integration is with respect to the joint distribution

p(S
n
D½

n
, t(i)),p(s

1
, s

2
,2,s

n
D½

n
, t(i)), (11)

the Q function may be calculated as follows (see also Wei and Tanner, 1990). Let
S
n,j

(j)N) denote the N draws of S
n
from p(S

n
D½

n
, t(i)) and let

QK (t)"N~1
N
+
j/1

lnM f (½
n
, S

n,j
Dt)N"N~1

N
+
j/1

Mln f (½
n
DS

n,j
,H)#ln f (S

n,j
DP)N.

(12)

The M-step is implemented by maximizing the QK function over t. This two-step
process is iterated until the values t(i) stabilize (N is usually set small at the start
of the iterations and large as the maximizer is approached). The quantity thus
obtained is the (approximate) maximum-likelihood estimate.

Each of these steps is quite easy. Estimating the Q function requires draws on
S
n
, and these are obtained by the method discussed in Section 2.1. In the M-step,
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the maximization is usually straightforward and separates conveniently into one
involving H in the sampling model and one involving P in the jump process. The
latter estimates are

pL
ii
"

+N
j/1

n
ii,j

+N
j/1

(n
ii,j

#1)
, i"1,2,m, (13)

where n
ii,j

is equal to the number of transitions from state i to state i in the vector
S
n,j

.

3.3. Marginal likelihood

The estimate of the marginal likelihood is completed by computing the value
of the posterior ordinate n(t*D½

n
) at t*. By definition of the posterior density

n(H*, P*D½
n
)"n(H*D½

n
)n(P*D½

n
, H*),

where

n(H*D½
n
)"Pn(H*D½

n
, S

n
)p(S

n
D½

n
) dS

n
(14)

and

n(P*D½
n
, H*)"Pn(P*DS

n
)p(S

n
D½

n
, H*) dS

n
, (15)

since n(P*D½
n
, H*, S

n
)"n(P*DS

n
). The first of these ordinates may be estimated

as

nL (H*D½
n
)"G~1

G
+
g/1

n(H*D½
n
, S

n,g
),

using the G draws on S
n

from the run of the Markov chain Monte Carlo
algorithm. The value n(H*D½

n
, S

n,g
) may be stored at the completion of each

cycle of the simulation algorithm.
The calculation of the second ordinate in Eq. (15) requires an additional

simulation MS
n,j

NG
j/1

of S
n
from p(S

n
D½

n
, H*). These draws are readily obtained by

appending a pair of additional calls to the simulation of S
n

conditioned on
(½

n
, H*, P) and P conditioned on (½

n
, H*, S

n
) within each cycle of the MCMC

algorithm. Because the ordinate n(P*DS
n
) is a product of Beta densities from the

first m rows of P, the estimate of the reduced conditional ordinate in Eq. (15) is

nL (P*D½
n
,H*)"G~1

G
+
j/1

m
<
i/1

n(p
ii
DS

n,j
)

"G~1
G
+
j/1

m
<
i/1
G
C (a#b#n

ii,j
#1)

C (a#n
ii,j

)C (b#1)Hp(a`nii,j~1)
ii

(1!p
ii
)(b`1~1).
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The log of the marginal likelihood from Eq. (8) is now given by

lnmL (½
n
)"ln f (½

n
Dt*)#lnn(H*)#lnn(P*)

!ln nL (H*D½
n
)!ln nL (P*D½

n
,H*). (16)

The calculation of Eq. (16) is illustrated in the examples.

4. Examples

4.1. Binary data with change point

Consider first a sequence of binary observations My
t
N, where y

t
3M0,1N, and

suppose that y
t
&Bernoulli(m

t
), where the probability m

t
is subject to change at

unknown time points. This is a canonical but non-trivial problem involving
change points. To illustrate the ideas discussed above, y

t
is simulated from the

process

m
t
"G

h
1
, t)50,

h
2
, 50(t)100,

h
3
, 100(t)150,

where h
1
"0.5, h

2
"0.75 and h

3
"0.25. The data is reproduced (in cumulative

sum form) in Fig. 1. To keep the discussion simple, it is assumed that h
k
(k)3)

is independent of any covariates. Note that the break at t"50 is not clearly
distinguishable in the graph.

One important inferential question is the estimation of the jump probability
matrix

P"A
p
11

p
12

0

0 p
22

p
23

0 0 1 B
and the change points Mq

1
,q
2
N. A second question is the comparison of models

with a single change point (M
1
), two change points (M

2
), and three change

points (M
3
). Note that M

1
contains the parameters (h

1
, h

2
, p

11
), whereas

M
2

and M
3

contain the parameters (h
1
, h

2
, h

3
, p

11
, p

22
) and (h

1
, h

2
,

h
3
, h

4
, p

11
, p

22
, p

33
), respectively.

For the prior distributions, assume exchangeability within each model and let

h
k
DM

r
&Beta(2,2), k)r#1,

p
ii
DM

r
&Beta(8,0.1), i)r.
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Fig. 1. Binary 0—1 data y
t
in example 4.1.

The prior on p
ii

reflects the prior beliefs that in model M
r
, the expected duration

of each regime is approximately 80 periods. One could argue that this assump-
tion is not reasonable for models M

2
or M

3
and a prior with shorter expected

duration for these models should be specified (e.g., by letting the first parameter
of the Beta distribution be 6 instead of 8). As one would expect, such a prior
changes the marginal likelihood but, in this example, does not alter the rankings
of the models that is reported below. In general, therefore, the key question is
whether the conclusions change (not just whether the Bayes factors change) as
the prior is perturbed by a reasonable amount. This must be ascertained on
a case by case basis.

Under these prior distributions, Mh
k
N in model M

r
, given the complete condi-

tioning set, are independent with density

n(h
k
D½

n
, S

n
, P)"Beta(h

k
D2#º

k
, 2#N

k
!º

k
), k)r#1, (17)

where N
k
"+n

t/1
I(s

t
"k) is the number of observations ascribed to regime k

and º
k
"+n

t/1
I(s

t
"k)y

t
is the sum of the y

t
in regime k. This corresponds to

the familiar Bayesian update for a Bernoulli probability with a single regime k.
The MCMC simulation algorithm is completed by simulating Mh

k
N from Eq. (17)

and S
n

and P as described in Sections 2.2 and 2.3. The MCMC sampling
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Fig. 2. Posterior probability of s
t
"k given binary data ½

n
.

algorithm for all three models is conducted for G"6000 iterations beyond
a transient stage of 1000 iterations.

In the MCEM algorithm, the revised estimates of h
k

are obtained as
hK
k
"º

k
/N

k
and those of P given S

n
according to Eq. (13). The modal estimates

were found by this algorithm at the end of a hundred EM steps. To evaluate the
Q function in these iterations, N was taken to be 1 for the first 10 steps and
gradually increased to 300 for the last ten steps.

Finally, in the marginal likelihood calculation the posterior ordinate at the
modal estimate h*

k
was found by averaging the beta density n(h

k
D½

n
, S

n
, P) over

the MCMC iterations, followed by a subsequent estimation of n(PDS
n
) from the

reduced Gibbs run with h
k
set equal to h*

k
. The likelihood function was estimated

from Eq. (9) using

f (y
t
D½

t~1
, s

t
)"hyt

st
(1!h

st
)(1~yt).

We summarize the results for the two change model in Fig. 2. The three lines in
this figure correspond to the marginal probability that s

t
"k given the data

½
n
at each time point t. It clearly indicates that the first 50 observations or so

belong to the first regime, the next 50 to the second regime and the remaining to
the third regime. The change points are identified very accurately by the
intersections of the three lines.
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Table 1
Maximized log-likelihood and log marginal likelihood for binary data

M
1

(One change point) M
2

(Two change points) M
3

(Three change points)

ln f (½
n
Dt*) !97.548 !92.912 !92.326

lnm(½
n
) !103.665 !101.872 !102.402

We report in Table 1 the evidence in the data for each of the three models.
The results imply that the Bayes factor B

21
is approximately six, while B

23
is

approximately 1.7. These Bayes factor provide (moderate) evidence in favor of
the two change-point model in relation to the two competing models.

4.2. Poisson data with change point

As another illustration of the methods in the paper consider the much
analyzed data on the number of coal-mining disasters by year in Britain over the
period 1851—1962 (Jarrett, 1979). Let the count y

t
in year t be modeled via

a hierarchical Poisson model

f (y
t
Dm

t
)"myt

t
e~mt/y

t
! (t)112)

and consider determining the evidence in favor of three models M
1
!M

3
.

Under M
1
, the no change point case, m

t
"j, j&Gamma(2,1). Under M

2
,m

t
is

subject to a single break:

m
t
"G

j
1

for t)q
1
,

j
2

for q
1
#1)t)112

with

j
1
, j

2
&Gamma(2,1).

Finally, under model M
3
, m

t
is subject to two breaks with

j
1
, j

2
, j

3
&Gamma(3,1).

The data on y
t
is reproduced in Fig. 3. In this context it is of interest to fit all

three models and to determine the Bayes factor B
12

for 1 vs. 2, B
13

for 1 vs. 3 and
B
23

for 2 vs. 3.
Carlin et al. (1992), in their analysis of these data, use a hierarchical Poisson

Bayesian model and fit the one change-point model and find that the posterior
mass function on q

1
is concentrated on the observations 36—46 with a mode at

y
41

. The three largest spikes are at t"39, 40, and 41, corresponding to a change
sometime between 1889 and 1892. These results are also easily reproduced from
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Fig. 3. Data on y
t
, posterior marginal densities of j

1
and j

2
and Pr(s

t
"kD½

n
).

our approach. It is not difficult to check that M(j
1
, j

2
)D(S

n
, ½

n
, P)N factors into

independent terms

j
k
D½

n
, S

n
, P&Gamma(2#º

k
, 1#N

k
), k)2,

where º
k
"+n

t/1
I(s

t
"k)y

t
and N

k
"+n

t/1
I(s

t
"k). As before, the MCMC

algorithm is initialized arbitrarily (at 0.9 for p
11

and 2 for j
1

and j
2
) and

implemented for G"6000 iterations beyond a transient stage of a thousand
steps. The prior on p

11
is Beta(8, 0.1). The MCEM algorithm, which yields the

modal estimates j*
1
, j*

2
and P*, is also implemented in the fashion described

above, i.e., the Q function is estimated from a single realization of S
n
in the first

ten steps and N"300 realizations in the final 10 steps. Finally, the marginal
likelihood is computed in a manner analogous to that described for the
Bernoulli model.

The results on fitting M
2

are reproduced in Fig. 3. This figure gives the
posterior marginal distributions of j

1
and j

2
and Pr(s

t
"kD½

n
). The posterior

means of j
1

and j
2

are found to be 3.119 and 0.957 with posterior standard
deviations of 0.286 and 0.120, respectively.

The break in the process is identified as occurring at around t"41. We also
derive the posterior mass function on q

1
by recording the time of the transition
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Fig. 4. Posterior probability mass function of q
1
.

from s
t
"1 to s

t
"2 in the MCMC simulations. The frequency distribution of

these transition points is given in Fig. 4. This mass function is virtually
indistinguishable from the one computed in Carlin et al. (1992) by alternative
means.

Next, we consider the efficacy of the proposed parameterization in fitting the
two change-point model and contrast it with the results from the one-at-a time
approach using the direct Mq

1
,q
2
N parameterization (which in this case can

be implemented). The prior on j
k

is Gamma(3,1), k)3 and that on p
11

and
p
22

is Beta(5,0.1). The MCMC algorithm is run for 10,000 iterations in each case.
The results for the marginal posterior distributions of q

1
and q

2
from the

one-at-a time algorithm and the new algorithm are reported in Figs. 5 and 6,
respectively.

Interestingly, the results in Fig. 5 are more diffuse and less plausible (both
approaches produce the same posterior distributions for the remaining para-
meters of the model).

Finally, we report on the evidence for models M
1

to M
3
. From Fig. 6 we see

that the posterior distributions of the change points are concentrated around
the same region. A formal calculation summarized in Table 2 confirms the lack
of support for two change points. The log marginal likelihood for M

1
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Fig. 5. Posterior probability function of q
1

(top panel) and q
2
: One-at-a time algorithm.

Fig. 6. Posterior probability function of q
1

(top panel) and q
2
: New algorithm.
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Table 2
Maximized log-likelihood and log marginal likelihood for coal mining disaster data

M
1

(No change point) M
2

(One change points) M
3

(Two change points)

ln f (½
n
Dt*) !203.858 !172.181 !171.450

lnm(½
n
) !206.365 !179.684 !180.836

is !206.365 and that of M
2

is !172.181, implying decisive evidence in favor
of M

2
.

The log marginal likelihood of the two change-point model M
3

is !180.836,
slightly lower than that of M

2
. Thus, we are able to conclude that these data do

not support a second change point.

5. Concluding remarks

This paper has proposed a new approach for the analysis of multiple
change-point models. The centerpiece of this approach is a formulation of the
change-point model in terms of an unobserved discrete state variable that
indicates the regime from which a particular observation has been drawn. This
state variable is specified to evolve according to a discrete-time, discrete-state
Markov process with the transition probabilities constrained so that the state
variable can either stay at the current value or jump to the next higher value.
This parameterization exactly reproduces the change-point model. In addition,
it was shown that the MCMC simulation of this model is straightforward and
improves on existing approaches in terms of computing time and speed of
convergence.

The paper also provides a means for comparing alternative change-
point models through the calculation of Bayes factors. This calculation
which was hitherto not possible, in general, due to the intractability of the
likelihood function is based on the computation of the marginal likeli-
hood of each competing model from the output of the MCMC simulation.
These calculations were illustrated in the context of models for binary and
count data.

It is important to mention that the approach proposed here should prove
useful in the development of new approaches for the classical analysis of the
change-point model. Besides providing a simple approach for the computation
of the likelihood function and maximum-likelihood estimates, it should allow
for the construction of new tests due to the connection with hidden Markov
models that is developed in this paper.
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Finally, the approach leads to a new analysis for the class of epidemic
change-point models. In a version of this model considered by Yao (1993), an
epidemic state is followed by a return to a normal state. This model becomes
a special case of the above framework if one restricts the state variable to take
three values such that the parameter values in the first and last state (corres-
ponding to the normal state) are identical. The MCMC analysis of the model
then proceeds with little modification.
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